

University of Toronto

Comparative Study of Web Service Architectures for Software Development

Kit of Transportation Applications

by

Ta Jiun Ting

A Thesis submitted to the

Faculty of Applied Science and Engineering

in partial fulfillment of the requirements for the degree of

Bachelor of Applied Science

© Ta Jiun Ting

Department of Civil Engineering

Toronto, ON

April 2019

Abstract

The use of Web services is an effective way to transfer information over the Web on

demand, suitable for transportation applications where requests are made from different locations.

However, there is a cost associated with each request in terms of the computational resources used.

Therefore, this paper seeks to recommend a Web service architecture by comparing REST and

SOAP, the two prevalent approaches to building Web services.

This paper explores the two different styles by comparing their performance when used in

the transportation research context. First, this paper establishes the metrics that are compared and

reviews similar studies in other areas of research. Afterward, tests are conducted by developing

RESTful and SOAP-based Web services that perform identical functions in a cloud computing

environment. Finally, the performance is measured using Azure API Management, the API

management solution created by Microsoft.

As part of this thesis, 5 Web services were selected in accordance with the needs of the

research team at the University of Toronto Transportation Research Institute, including functions

such as data processing and retrieval. These Web services and the database are hosted on Microsoft

Azure, and the associated APIs are published using Azure API Management. Subsequently, tests

are designed to measure the performance of these APIs in terms of speed and resource usage.

Lastly, the analysis is performed using the monitoring tools provided by Azure API Management

to obtain the results and recommendations for future implementations in this area.

The analysis results show that RESTful Web services use less bandwidth than their SOAP-

based counterparts. However, there is no significant difference between the two architectures in

terms of response time. Therefore, a RESTful approach to Web services is recommended, as the

SOAP-based design has seemingly no advantage over the RESTful approach.

Acknowledgements

I would like to express my most sincere gratitude to my thesis supervisor Dr. Baher

Abdulhai of the Faculty of Applied Science and Engineering at the University of Toronto. He has

provided me with continuous support throughout my undergraduate study and the door to his office

is always open when I needed guidance.

I would also like to thank Ph.D. Candidate Ahmed Aqra for his unrelenting support

throughout the final two years of my undergraduate study, as well as the writing of this paper.

Without his extensive knowledge and passionate input, the research on Web service performance

could not have been successfully conducted.

Finally, I must also offer my deepest gratitude to my parents for their unwavering support

and constant encouragement throughout my undergraduate study and writing this thesis. I must

also thank Xun Wei for all her support. This accomplishment would not have been possible without

them.

Author

Ta Jiun Ting

iv

Table of Contents

Abstract ... ii

Acknowledgements .. iii

Nomenclature ... viii

Chapter 1 Introduction ... 1

1.1 Research Motivation .. 1

1.2 Problem Definition ... 1

1.3 Research Methodology ... 2

1.4 Scope of Work .. 2

1.5 Assumptions ... 2

1.6 Organization of Thesis ... 3

Chapter 2 Literature Review.. 4

Chapter 3 Background ... 6

3.1 Application Programming Interface ... 6

3.2 Architecture and Design ... 6

3.3 API Lifecycle ... 8

3.4 API Management.. 9

3.5 API Performance .. 9

Chapter 4 Methodology ... 10

4.1 Web Services in the ATIS SDK ... 10

4.1.1 Centreline API .. 12

4.1.2 Roads API ... 12

4.1.3 Travel Demands API... 13

v

4.1.4 Traffic Information API .. 13

4.2 Azure API Management ... 14

4.3 SOAP Implementation ... 14

4.4 RESTful Implementation ... 15

4.5 Performance Metrics .. 16

4.6 Testing Procedure ... 17

Chapter 5 Results ... 18

Chapter 6 Discussions ... 21

Chapter 7 Conclusions and Recommendations ... 22

References ... 23

vi

List of Tables

Table 3-1. Comparison between SOAP and REST, adapted from [7].. 7

Table 4-1. List of metrics to be measured ... 17

Table 4-2. List of Web services to be compared in this paper .. 17

Table 5-1. Request size ... 18

Table 5-2. Response size... 19

Table 5-3. Response time .. 20

vii

List of Figures

Figure 4-1. Overview of the ATIS SDK ... 11

Figure 4-2. Overview of the Web service architecture ... 16

Figure 5-1. Request size comparison .. 19

Figure 5-2. Response size comparison.. 20

viii

Nomenclature

% Percent

API Application programming interface

ATIS Advanced Traveler Information System

BPEL Business Process Execution Language

CPU Central processing unit

CRUD Create, read, update, and delete

CSV Comma-separated values

ESB Enterprise service bus

GB Gigabyte

GPS Global Positioning System

GTA Greater Toronto Area

HTTP Hypertext Transfer Protocol

ITS Intelligent Transportation System

ITSoS Intelligent Transportation System of Systems

JSON JavaScript Object Notation

ms Millisecond

OSM OpenStreetMap

REST Representational state transfer

SDK Software Development Kit

SQL Structured Query Language

URI Uniform Resource Identifiers

UTTRI University of Toronto Transportation Research Institute

ix

WSDL Web Service Description Language

XML Extensive Markup Language

1

Chapter 1 Introduction

Software development kit (SDK) is an essential tool for any software development

environment, it enables the developers to contribute to the development process. Recently,

researchers in the Intelligent Transportation System (ITS) research group at the University of

Toronto Transportation Research Institute (UTTRI) started building an SDK for the Advanced

Traveler Information System (ATIS). The ATIS project is part of the larger Intelligent

Transportation System of Systems (ITSoS) project, and this study is part of the ATIS SDK.

1.1 Research Motivation

The goal of ATIS is to provide information to travellers to help them reach their

destinations. Therefore, different types of information from multiple sources are needed to provide

this service. One way to achieve this is to host all the data in a centralized database, then expose

the required data using Web services. In this case, there would be a gateway that responds to

specific requests made through an application programming interface (API), then serve the

required data over Hypertext Transfer Protocol (HTTP).

1.2 Problem Definition

In order to meet the demands of a large system such as the ATIS, it is essential for the API

to work correctly and efficiently. In addition, the research group has finite resources available

across projects, thus the resource usage of the Web services should be minimized. Currently, there

are two prevalent architectures used in Web services: SOAP (originally an acronym for Simple

Object Access Protocol) and representational state transfer (REST). This paper explores the

differences between the two approaches and compares the performance of these designs when

deployed in the context of a transportation research group. Related work has been performed in

other fields such as mobile devices and communications, but not in the transportation field. The

results from related studies are presented in Chapter 2.

2

1.3 Research Methodology

To complete this comparison, five services are selected and outlined with based on the

needs of the research group, and to represent the four basic operations used in database

applications: create, read, update, and delete (CRUD). To ensure a fair comparison, Web services

that provide identical functionalities are developed using both SOAP-based and RESTful

approaches. The Web services are developed using Flask with Python 2.7, and the server is hosted

on a virtual machine on Microsoft Azure. Azure API Management, the API management solution

created by Microsoft, is used to record the performance of the Web services for this thesis. Lastly,

performance is analyzed by repeatedly invoking the five services. More details regarding the Web

services selected and the testing procedure are presented in Chapter 4.

1.4 Scope of Work

The purpose of this thesis is to investigate the two Web service architectures and

recommend a design for the ATIS SDK. Therefore, performance is measured based on the five

Web services recommended by the ATIS research group. In addition, three metrics are used during

this comparison: request packet size, response packet size, and response time. These metrics are

chosen based on a review of literature, and Azure API Management measures them with its built-

in monitoring tool [1]. No additional tool is developed during this study to assess the performance

of Web services. As such, the findings of this study are based solely on the comparison between

the five Web services mentioned above using these three metrics. Chapter 4 provides more

information regarding Azure API Management, as well as discusses the performance metrics in

detail.

1.5 Assumptions

In order to simplify the problem at hand, this study relies on some assumptions to ensure a

fair comparison between Web service architectures.

3

1. Python is used to develop Web services for both architectures. This paper assumes Python

as a programming language does not favour any Web service architecture.

2. A third-party API management solution is used to measure the performance metrics for

both architectures. This paper assumes the selected API management solution does not

favour any architecture.

3. The Web services are developed using external open-source libraries and these libraries

are treated as a black box. Different libraries are used to develop Web services for different

architectures and may have different effects on performance between the two architectures.

This paper assumes that the differences will be small enough to not affect the overall

results.

4. The Web services will be hosted on a server, and a separate client will be used to test the

API performance for both architectures. This paper assumes the hardware used during the

comparison, such as the server and the client, does not favour any architecture.

5. All of the data that may be served by the API is stored in a back-end database for both

architectures. This paper assumes the back-end database that the API is connected to does

not favour any architecture.

1.6 Organization of Thesis

Chapter 2 reviews literature to establish what metrics should be measured and provides

some results based on similar studies done in other fields. 00 provides more background

information about API and API management, as well as provides a summary of the similarities

and differences between the SOAP and RESTful design. Chapter 4 provides a detailed summary

for each Web services and an explanation of the testing procedure. Chapter 5 examines the

numerical results of the comparison, while Chapter 6 discusses the qualitative findings of the

result. Finally, Chapter 7 outlines the recommendations or conclusions that can be drawn from the

results of this comparison.

4

Chapter 2 Literature Review

This section reviews other studies that compare performance between SOAP-based and

RESTful Web services in the past 10 years. While similar studies have been performed in other

applications such as mobile devices and multimedia conferencing, there has been no such study in

transportation-related applications. These studies provide a good foundation for evaluating the

performance of SOAP-based and RESTful Web services, but it should be noted that results could

differ depending on the application and its implementation.

Several recent studies [2], [3], [4] suggest that SOAP-based Web services have slower

response times and larger network loads. Mulligan and Gracanin [2] conducted a study in 2009 to

measure the performance of REST-based and SOAP-based middleware framework

implementation using the Portal framework. The study found that REST-based implementations

for middleware framework have better latency and smaller packet sizes than their SOAP-based

counterparts [2]. The study also demonstrates that the difference in latency between the two

implementations increases as the application becomes more complex, or as the number of

synchronous requests increases [2]. A case study done in 2012 by Belqasmi et al. [3] reached

similar conclusions when comparing the performance of Web services in multimedia

conferencing. The case study compares the end-to-end delay of the conferencing operations, as

well as the network load of the request and the response for each application [3]. The study found

that SOAP-based Web services can take up to four times longer, with network loads up to three

times compared to their RESTful counterparts in multimedia conferencing applications [3]. Lastly,

a study conducted in 2012 by Mohamed and Wijesekera [4] that compares the performance of Web

services on mobile devices also supports that RESTful Web services perform better than their

SOAP-based counterparts in both response time and resource usage. The study compares Web

services during concurrent requests, as well as the CPU and memory usage during testing [4]. The

study concludes that SOAP-based implementations have a response time that is between 1.5 and

3 time longer, along with 2 to 5 times increased CPU consumption compared to RESTful Web

services [4]. However, the finding is based on a single Web service tested using mobile devices,

and the study does not draw any conclusions for other computing devices.

5

 On the other hand, some studies [2], [5] show that support for each architecture varies

depending on the implementation. In the enterprise environment, Kumari and Rath [5] claim that

there is better support for SOAP-based implementations, and it is difficult to find the correct tool

for REST-based implementations. In addition, the Enterprise service bus (ESB) tools used during

the study did not “provide any means for integration of REST-based services” [5]. On the other

hand, [2] notes that the SOAP-based implementation in the multimedia conferencing application

requires the use of a specialized SOAP client to interact with a SOAP-enabled HTTP server. In

addition, the SOAP framework used was “the only one that is still actively developed, open-source

with a non-restrictive license” at the time of the study [2]. The study also mentions that REST-

based implementation does not suffer from this restriction, and any HTTP client library to make

requests to the REST server [2].

6

Chapter 3 Background

3.1 Application Programming Interface

An application programming interface (API) is a library of functions and tools for building

other software. It is essential for any software development process, as it facilitates developers to

break down larger problems into smaller tasks and subroutines that serve as building blocks to the

overall project. In addition, an API can be used across multiple projects. This paper focuses on

APIs that communicate over the Web, known as Web services. A Web service typically has

exposed endpoints that respond to a set of predefined requests invoked over HTTP, then respond

to the request by sending data using formats such as JavaScript Object Notation (JSON) or

Extensive Markup Language (XML).

3.2 Architecture and Design

Currently, there are two main approaches to implementing Web services, SOAP-based and

RESTful Web services. Each approach offers some advantages and disadvantages. Therefore, the

choice of architecture may vary according to the application.

 SOAP is a specification in which systems can interact with one another over the Web. The

messages are sent in the XML format, usually over HTTP, but other transport protocol can be used

as well [6]. It was developed in 1998 by Dave Winer et al. in Microsoft, to address the needs of

large corporations and the enterprise market [7]. In SOAP-based implementations, Web services

have a unique Web Service Description Language (WSDL) that is used to document the contract

between the server and the client [5]. A SOAP message consists of a SOAP envelope, and the

SOAP header/body are contained inside the envelope. SOAP envelope denotes the beginning and

the end of the message, while the body contains the actual message being sent [8]. SOAP is a

robust, extensive specification used by many systems across the world, and its use of open

standards makes it easily extendable [4]. However, a SOAP message contains redundant

information and “does not use many of the functionalities built into HTTP” [9].

7

On the other hand, representational state transfer (REST) is an architectural style created

by Roy Fielding in the University of California, Irvine [10], and Web services conforming to the

REST principles are known as RESTful services. RESTful services utilize GET, POST, PUT, and

DELETE, the four basic built-in HTTP interaction methods, to directly access resources using

Uniform Resource Identifiers (URI) [9]. Since RESTful services are built on top of mature Web

standards widely in use, such as HTTP and URI, RESTful services are easier to provide services

between organizations over the Web and are perceived to be more scalable [6]. In addition,

RESTful services utilize the JSON format, which is lighter than XML format. Overall, RESTful

services can run faster and utilize fewer resources, and they are freely accessible on the Web once

deployed [4], [9]. However, it is difficult to transfer large and complex data as they need to be

encoded into URI for them to be accessed [4], [9]. Table 3-1 contains a detailed comparison of the

two design approaches discussed.

Table 3-1. Comparison between SOAP and REST, adapted from [7].

Topic SOAP REST

Pros Follows a formal enterprise

approach

 Works on top of any

communication protocol, even

asynchronously

 Information about objects is

communicated to clients

 Security and authorization are

part of the protocol

 Can be fully described using

WSDL

 Relatively easy to implement and

maintain

 Clearly separates client and

server implementations

 Communication is not controlled

by a single entity

 Information can be stored by the

client to prevent multiple calls.

 Can return data in multiple

formats (JSON, XML etc.)

8

Table 3-2. (Continued)

Cons Costs a lot of bandwidth

communicating metadata

 Hard to implement

 Only works on top of the HTTP

protocol

 Hard to enforce authorization and

security

When to use When clients need to have

access to objects available on

servers

 When the goal is to enforce a

formal contract between the

client and the server

 When clients and servers operate

on a Web environment

 When information about objects

does not need to be

communicated to the client

When not to use When the goal is for most of the

developers to easily use the API

 When the bandwidth is very

limited

 When there is a need to enforce a

strict contract between client and

server

 When performing transactions

that involve multiple calls

Conclusion Use when dealing with

transactional operations and the

audience that is already satisfied

with this technology

Use when the goal is wide-scale API

adoption or when the

API is targeted for mobile

applications

3.3 API Lifecycle

A typical API has the following stages in its life cycle: development, analysis, operation,

depreciated, and retired [7]. In the beginning, when the API is being designed and developed, it is

not visible nor deployed [7]. Afterwards, the API is deployed to a limited set of consumers for

them to try out and provide feedback, it is also analyzed for monetization in this stage [7]. Then,

the API is fully in operation, where it is maintained, monitored, and scaled [7]. After some time,

the API becomes depreciated when a new version is published, where it is still deployed but not

9

visible to new users [7]. Finally, the API becomes retired when it is unpublished and deleted [7].

This study investigates APIs that are in the development stage.

3.4 API Management

API management refers to the process of managing the API throughout its life cycle, from

publishing APIs to ongoing maintenance. This is needed because the developer would like to

assess the success of an API implementation according to a set of metrics to determine how the

API is used. In addition, API management allows APIs to be more scalable, as it allows the

developers to enforce usage and restrict access as the number of users increase. This is especially

important since the API endpoint is exposed to the public. Moreover, API management provides

documentation that allows developers of different background to learn about the API and start

using it with ease [9]. With the recent surge of mobile and Web applications [11], more and more

API management solutions are now available on the market. Azure API Management [12], the

API management solution from Microsoft, is selected for this project.

3.5 API Performance

To assess the success of APIs, APIs need to be tested against a set of predefined metrics

and criteria [9]. A load test is an effective strategy to determine the performance as well as resource

utilization of APIs [9]. To do this, APIs should be put under test in load conditions, and the relevant

metrics measured [9]. Common metrics include response time, latency, error rates, central

processing unit (CPU) utilization, memory utilization, and message payload size [9]. On the other

hand, security and user privacy are paramount for any Web service [13]. Aspects of API security

testing include testing the authentication method, as well as testing against possible injection

attacks [9].

10

Chapter 4 Methodology

As part of this thesis, five Web services are defined according to the needs of the research

group. These Web services are invoked over HTTP to process requests or to update/retrieve pre-

defined data. To create a comparison between architectures, two sets of Web services that perform

identical functions are developed. The first set conforms to the RESTful style, while the second

set is developed according to the SOAP standard. Afterwards, the performance comparison of

these services is made using Microsoft Azure API Management Tool. The Web services are written

in Python using the Flask Web framework [14], as well as other third-party tools and libraries to

simplify the development process. As a result, a lot of the Web service interaction is abstracted

away from the developers. In addition, the API server and the back-end database used are hosted

on a cloud computing service, where the author has no direct control over how resources are

utilized. Therefore, the results measured using these Web services may not reflect other RESTful

and SOAP Web service implementations accurately.

4.1 Web Services in the ATIS SDK

This section discusses the APIs that are developed for this thesis, these APIs form part of

the ATIS SDK. A preliminary design of the ATIS SDK was developed by Ahmed Aqra in June

2018 is shown in , with the portion related to this paper highlighted in red.

11

Figure 4-1. Overview of the ATIS SDK

12

4.1.1 Centreline API

The first set of Web services is the Centreline API. They create a virtual representation of

the road network on the database and forms the basis for further research and analysis. This

involves abstracting map data from multiple sources into lists of road segments, intersections, and

their connectivity. This is done by inspecting the information provided for each road segment and

each intersection, then the data relevant to the ATIS SDK are extracted for storage on the database.

Relevant data include road name, GPS coordinates, number of lanes, speed limit, etc. This project

uses publicly available road inventory data from the municipalities in the Greater Toronto Area

(GTA), and the Government of Ontario. In addition, data is also obtained from OpenStreetMap

(OSM) [15], a worldwide collaborative mapping project that is open data, free to use by the public.

The data provided by the municipalities are in the Esri shapefile format [16], and the PyShp

library was used to convert the data [17]. On the other hand, the data provided by the Government

of Ontario are in the Esri geodatabase format, and the ArcMap program was used to extract the

data. Lastly, the data available from OSM is in a format specific to OpenStreetMap, and a third-

party library, PyOsmium [18], is needed to convert this data into the desired format. Once the

desired data is extracted from these sources, they are reformatted and stored according to the

relations in the database.

4.1.2 Roads API

The second set of Web services is the Roads API, it allows the roads database to be

searched using the road names or identifiers. In addition, road intersections can also be queried by

providing multiple road names as inputs. If the identifier of the road element is known, information

can be queried directly using this API. However, this has limited use since the identifiers used in

the database are unique to the system. Since the goal of the ATIS is to provide travellers with

information about the real world, there needs to be a way to query the database using elements

such as road names and addresses. Furthermore, another Web service is developed to return all

road sections between two intersections. This is particularly useful when during road events such

as incidents or closures since only a certain section of a road will be affected. Lastly, any changes

13

to the road network, such as updating road items with new information, or deleting road items, are

also included in this API. These functionalities are provided by searching the road elements in the

database by name using SQL (Structured Query Language) queries and return all relevant

information to the caller.

4.1.3 Travel Demands API

The third set of Web services is the Travel Demand API, which allows retrieving zonal

centroid data from the database. The transit agencies around the Greater Toronto Area divides

GTA into multiple zones for the purpose of transportation analysis. Therefore, information about

the residents and their travel habits are provided to UTTRI at the zonal level. Given the zonal

travelling data, the geographic centroid of each zone is needed in order to perform traffic

assignment. This functionality is provided by storing the centroid information of each zone in the

database and retrieve them on demand.

4.1.4 Traffic Information API

The last set of Web services is the Traffic Information API, it includes gathering traffic

data from external sources. The first Web service in this section involves Bluetooth travel data

from Toronto Open Data, which collects travel times information based on Bluetooth sensors.

Toronto Open Data provides travel times information for the past 4 years to the public in a comma-

separated values (CSV) format, which is then stored in the database using Python. The second

Web service involves collecting data from Google’s Direction API, which returns travel time

predictions between two points at a specified time in the future [19]. The Google Directions API

is used to generate traffic predictions for each route in the database, across different times in the

morning rush hour period.

14

4.2 Azure API Management

Azure API Management, the API management solution from Microsoft Corporation, is

used during the development of the ATIS SDK. Azure API Management provides a platform for

API testing and publishing and allows connection to the backend Web services, which is hosted

on a virtual machine on Microsoft Azure. In addition, it allows the developers to “get near real-

time usage, performance and health analytics” [12]. Lastly, it provides the research team with a

way to restrict and control access to the APIs to effectively utilize the limited resources.

Azure API Management performs these functions by providing a gateway through which

the API is exposed to the public, as well as an administrative portal and a developer portal [20].

The API gateway works by first verifying the credentials of the caller, then accepts the API calls

and routes them to the backend Web services while logging the metadata for analytics purposes

[20]. The administrative portal is where the owner of the APIs can manage user policies, pricing,

and quotas, as well as obtain insight from analytics [20]. Finally, the developer portal provides an

interface for the end users to review API documentation, try out different APIs, and create accounts

to subscribe to the Web services [20].

4.3 SOAP Implementation

The SOAP-based Web services are developed using the Flask extension Flask-Spyne [21].

The Flask-Spyne library is selected because it is built on the Flask framework [21], and it is the

most up-to-date Python library that supports implementing SOAP-based Web services at the time

conducting this study. With that being said, it still utilizes the outdated SOAP 1.1 standard and

Python 2.7 [21]. The Flask-Spyne extension automatically creates a WSDL file for the SOAP-

based Web services that can be published on Azure API Management.

15

4.4 RESTful Implementation

The RESTful Web services are built using Flask-RESTful, an extension to the Flask

framework that adds support for building RESTful APIs [22]. After the API is created and the

server is set up, the API is published using Azure API Management. Azure API Management

requires the use of OpenAPI specification for publishing RESTful APIs [23]. Therefore, a Flask

extension, Flasgger [24], is used to extract the OpenAPI specification for the RESTful API.

Since REST is an architectural style rather than a standard, the Flask-RESTful extension

can be viewed as an interpretation of a design that adheres to RESTful principles. This thesis treats

the extension as a black box and does not investigate the design choices made in the Flask-RESTful

implementation.

In both the SOAP and REST implementations, Python 2.7 is used to ensure a fair

comparison. In addition, the Flask API server is a virtual machine hosted on Microsoft Azure, the

cloud computing service created by Microsoft, with 2 virtual CPUs, 4 GB of memory, and Ubuntu

Server 18.04 as its operating system. Furthermore, all data are stored in a back-end SQL database,

also hosted on Microsoft Azure. When a request is made to the API portal on Azure API

Management, the request is sent to the respective Flask server. The server then processes the

request and queries the requested data from the SQL Server using SQL queries. Afterwards, the

server sends the response to Azure API Management, which then returns the response to the client.

Figure 4-2 illustrates the data flow in the implementation used in this thesis.

16

Figure 4-2. Overview of the Web service architecture

4.5 Performance Metrics

Azure API management provides a tool, Azure Monitor, that monitors APIs and includes

many of the metrics mentioned previously [1]. Therefore, for the scope of this paper, no additional

monitoring tools are developed, and the comparison will be based solely upon the metrics provided

by Azure Monitor. In addition, the metrics are recorded at the API gateway level. Azure Monitor

does not monitor the CPU and memory utilization directly, thus these metrics will not be included

in the tests. In addition, latency measures the delay introduced by any links between the client and

the server [9]. Since all the APIs developed during testing will be hosted on the same server, the

latency metric is not meaningful and will also be omitted in the tests. Lastly, security-related

metrics are beyond the scope of this paper due to the difficulty in establishing meaningful metrics

and measuring them. The following table provides a summary of the metrics that will be used in

this paper, adapted from [1].

Client

Azure API
gateway

RESTful Web
Services

SOAP-based
Web Services

SOAP REST

Microsoft Azure SQL Database

Microsoft Azure
Virtual Machine

17

Table 4-1. List of metrics to be measured

Name of metric Units Description

Response time ms Time elapsed from the moment gateway receives request until the

moment response is sent in full

Request size bytes The packet size of the request from the client

Response size bytes The packet size of the response sent by the server

4.6 Testing Procedure

For this paper, five Web services from the previously mentioned APIs are selected for

comparison between SOAP and RESTful. They are chosen for a balanced representation of all the

APIs mentioned above, as well as include all four CRUD operations. The five Web services chosen

are listed in Table 4-2. Testing is done by repeatedly invoking these Web services and recording

the metrics listed above.

Table 4-2. List of Web services to be compared in this paper

Name of Web service Type Description

Centreline API: Process

OpenStreetMap Data

Create Given the data file extracted from OpenStreetMap,

create a virtual road network in the database

Roads API: Retrieve

road item

Read Given a road item number, find the corresponding road

item in the database and return relevant attributes

Roads API: Update

road item

Update Given a road item number and the updated values,

update the corresponding road item in the database

Roads API: Delete road

item

Delete Given a road item number, remove the corresponding

road from the database

Travel Demands API:

Search centroid by zone

Read Given a zone number, return its geographical centroid

18

Chapter 5 Results

During testing, each Web services was invoked 1000 times, thus the number of

observations for each service is 1000. Where possible, parameters such as road item number or

zone number are changed across requests, according to a predefined pattern that is used for both

the SOAP-based and RESTful Web services. Once the testing is finished, Azure API Management

stores a log of all requests on Microsoft Azure in JSON format. This log is downloaded then

analyzed to obtain the results presented in this section. Table 5-1 and Figure 5-1 present the results

for request sizes, while Table 5-2 and Figure 5-2 present the results for response size. Lastly, Table

5-3 tabulates the results for response time. The results for response time are not presented in a bar

chart due to the large variance observed in the data.

Table 5-1. Request size

 Sample mean (bytes) Standard deviation (bytes)

SOAP REST SOAP REST

Centreline API: Process

OpenStreetMap Data

646 254 0 0

Roads API: Retrieve road item 660 243 0 0

Roads API: Update road item 828.9 340.9 0.3 0.3

Roads API: Delete road item 666 246 0 0

Travel Demands API: Search

centroid by zone

677.2 237.2 0.4 0.4

19

Figure 5-1. Request size comparison

Table 5-2. Response size

 Sample mean (bytes) Standard deviation (bytes)

SOAP REST SOAP REST

Centreline API: Process

OpenStreetMap Data

419 149 0 0

Roads API: Retrieve road item 1618.7 1307.5 10.4 5.2

Roads API: Update road item 415 154 0 0

Roads API: Delete road item 415 95 0 0

Travel Demands API: Search

centroid by zone

562.2 233.2 0.4 0.4

646 660

828.9

666 677.2

254 243

340.9

246 237.2

0

100

200

300

400

500

600

700

800

900

Centreline API: Process
OpenStreetMap Data

Roads API: Retrieve
road item

Roads API: Update
road item

Roads API: Delete road
item

Travel Demands API:
Search centroid by

zone

Request Size (bytes)

SOAP REST

20

Figure 5-2. Response size comparison

Table 5-3. Response time

 Sample mean (ms) Standard deviation (ms)

SOAP REST SOAP REST

Centreline API: Process

OpenStreetMap Data

10029.7 10092.2 1197.3 502.0

Roads API: Retrieve road item 37.5 37.7 19.2 41.8

Roads API: Update road item 45.0 45.1 15.5 22.2

Roads API: Delete road item 46.6 45.4 33.1 36.8

Travel Demands API: Search

centroid by zone

33.0 33.2 9.9 22.2

419

1618.7

415 415

562.2

149

1307.5

154
95

233.2

0

200

400

600

800

1000

1200

1400

1600

1800

Centreline API:
Process

OpenStreetMap Data

Roads API: Retrieve
road item

Roads API: Update
road item

Roads API: Delete road
item

Travel Demands API:
Search centroid by

zone

Response Size (bytes)

SOAP REST

21

Chapter 6 Discussions

The test results show that the in the SOAP-based Web services have request sizes between

390 and 490 bytes, as well as response sizes between 260 and 330 bytes larger than their RESTful

counterparts. This is consistent with the finding of [2] and [3] as presented in Chapter 2. Larger

packet sizes translate to increased cost on a cloud computing service due to the increased

bandwidth usage. On the other hand, it appears that SOAP-based Web services have a slightly

faster mean response time compared to the REST-based Web services, which is inconsistent with

all the literature reviewed in Chapter 2. This can be somewhat explained by the large variation of

the measured response times. A two-tailed T-test with a p-value of 0.05 shows that the null

hypothesis that the two sample distributions are equal cannot be rejected in any of the Web services

tested. Therefore, the test result does not draw any conclusive results on the response time

comparison and suggests that more work is needed to control the variance of the measured

response times.

The large variation in the measured response time may be due to the usage of the cloud

platform in the test. Firstly, the developers cannot directly control the resources used on the cloud

platform, where the provider may allocate different resources to the server over time depending

on the server load. In addition, since the response time is only measured at the Azure API gateway,

we cannot determine the compute time at the server and the database, as well as the latency

between the gateway, server, and the database. Overall, more work is required to investigate the

effects of cloud computing on the measured results.

22

Chapter 7 Conclusions and Recommendations

In this paper, a comparison between SOAP-based and RESTful Web services is made using

a transportation-themed API hosted on Microsoft Azure. The APIs compared by this paper are

selected based on the needs of a transportation research group to cover the common database

operations and HTTP methods. The results show that RESTful Web services have a smaller

network load compared to SOAP-based services, while the response time is roughly the same

between the two architectures. In addition, building a SOAP-based server today can entail using

outdated standards and specifications that are no longer being maintained, while support for

RESTful services are widely available and constantly updated. Therefore, if one were to start

building a set of Web services today, there is little advantage to select a SOAP-based approach,

and a RESTful implementation is recommended.

23

References

[1] Microsoft Corporation, "Monitor published APIs," 14 June 2018. [Online]. Available:
https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-use-
azure-monitor. [Accessed 26 October 2018].

[2] G. Mulligan and D. Gracanin, "A Comparison of SOAP and REST Implementations of a
Service-Based Interaction Independence Middleware Framework," in 2009 Winter
Simulation Conference, Austin, TX, USA, 2009.

[3] F. Belqasmi, J. Singh, S. Y. Bani Melhem and R. H. Glitho, "SOAP-Based vs. RESTful
Web Services: A Case Study for Multimedia Conferencing," IEEE Internet Computing,
vol. 16, no. 4, pp. 54-63, 8 May 2012.

[4] K. Mohamed and D. Wijesekera, "Performance Analysis of Web Services on Mobile
Devices," Procedia Computer Science, no. 10, pp. 744-751, January 2012.

[5] S. Kumari and S. K. Rath, "Performance comparison of SOAP and REST based Web
Services for Enterprise Application Integration," in 2015 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), Kochi, India, 2015.

[6] M. Garriga, C. Mateos, A. Flores, A. Cechich and A. Zunino, "RESTful service
composition at a glance: A survey," Journal of Network and Computer Applications, pp.
32-53, 2015.

[7] S. Patni, Pro RESTful APIs: Design, Build and Integrate with REST, JSON, XML and
JAX-RS, Santa Clara, California: Apress Media, LLC, 2017.

[8] World Wide Web Consortium, "SOAP Version 1.2 Part 0: Primer (Second Edition)," 27
April 2007. [Online]. Available: https://www.w3.org/TR/2007/REC-soap12-part0-
20070427/#L1161. [Accessed 12 October 2018].

[9] B. De, API Management: An Architect’s Guide to Developing and Managing APIs for
Your, Bangalore, Karnataka, India: Apress Media, 2017.

[10] R. T. Fielding, "Architectural Styles and the Design of Network-based Software
Architectures," University of California, Irvine, Irvine, CA, 2000.

[11] H. Niu, I. Keivanloo and Y. Zou, "API usage pattern recommendation for software
development," Journal of Systems and Software, pp. 127-139, 2016.

[12] Microsoft Corporation, "API Management," 12 October 2018. [Online]. Available:
https://azure.microsoft.com/en-ca/services/api-management/.

24

[13] J. Snell, D. Tidwell and P. Kulchenko, Programming Web Services with SOAP,
Sebastopol, CA: O'Reilly & Associates, Inc., 2001.

[14] A. Ronacher, "Welcome," Flask (A Python Microframework), 2019. [Online]. Available:
http://flask.pocoo.org/. [Accessed 18 March 2019].

[15] OpenStreetMap, "Copyright and License," 2018. [Online]. Available:
https://www.openstreetmap.org/copyright. [Accessed 30 October 2018].

[16] Environmental Systems Research Institute, Inc., "ESRI Shapefile Technical Description,"
July 1998. [Online]. Available:
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf. [Accessed 19 March 2019].

[17] J. Lawhead, "PyShp," 2013. [Online]. Available:
https://github.com/GeospatialPython/pyshp. [Accessed 19 March 2019].

[18] S. Hoffmann, "PyOsmium," 2018. [Online]. Available: https://osmcode.org/pyosmium/.
[Accessed 19 March 2019].

[19] Google, "Directions API: Developer Guide," 16 January 2019. [Online]. Available:
https://developers.google.com/maps/documentation/directions/intro. [Accessed 5 March
2019].

[20] Microsoft Corporation, "What is API Management?," 14 November 2017. [Online].
Available: https://docs.microsoft.com/en-us/azure/api-management/api-management-key-
concepts. [Accessed 1 November 2018].

[21] Spyne Contributors, "Spyne Documentation," [Online]. Available:
http://spyne.io/docs/2.10/. [Accessed 5 February 2018].

[22] K. Burke, K. Conroy, R. Horn, F. Stratton and G. Binet, "Flask-RESTful - Flask-RESTful
0.3.6 documentation," 2018. [Online]. Available: https://flask-
restful.readthedocs.io/en/latest/. [Accessed 4 December 2018].

[23] OpenAPI Initiative, "Home," OpenAPI Initiative, 2019. [Online]. Available:
https://www.openapis.org/. [Accessed 19 March 2019].

[24] B. Rocha, "Flasgger," 2014. [Online]. Available: https://github.com/rochacbruno/flasgger.
[Accessed 19 March 2019].

